Jumat, 20 November 2015

Pengertian Semikonduktor Konduktor Dan Isolator

SEMIKONDUKTOR, KONDUKTOR DAN ISOLATOR

1. SEMIKONDUKTOR

   Prinsip Dasar dan Pengertian Semikonduktor – Kata “Semikonduktor” sangat identik dengan peralatan Elektronika yang kita pakai saat ini. Hampir setiap peralatan Eletronika canggih seperti Handphone, Komputer, Televisi, Kamera bahkan Lampu penerang LED juga merupakan hasil dari Teknologi Semikonduktor. Komponen-komponen penting yang membentuk sebuah Peralatan Elektronika seperti Transistor, Dioda dan Integrated Circuit (IC) adalah komponen elektronika aktif yang terbuat bahan semikonduktor. Oleh karena itu, bahan Semikonduktor memiliki pengaruh yang sangat besar terhadap perkembangan Teknologi Elektronika.

Bahan Semikonduktor (Semiconductor) adalah bahan penghantar listrik yang tidak sebaik Konduktor (conductor) akan tetapi tidak pula seburuk Insulator (Isolator) yang sama sekali tidak menghantarkan arus listrik. Pada dasarnya, kemampuan menghantar listrik Semikonduktor berada diantara Konduktor dan Insulator. Akan tetapi, Semikonduktor berbeda dengan Resistor, karena Semikonduktor dapat dapat menghantarkan listrik atau berfungsi sebagai Konduktor jika diberikan arus listrik tertentu, suhu tertentu dan juga tata cara atau persyaratan tertentu.


PROSES DOPING PADA SEMIKONDUKTOR

   Sebenarnya banyak bahan-bahan dasar yang dapat digolongkan sebagai bahan Semikonduktor, tetapi yang paling sering digunakan untuk bahan dasar komponen elektronika hanya beberapa jenis saja, bahan-bahan Semikonduktor tersebut diantaranya adalah Silicon, Selenium, Germanium dan Metal Oxides. Untuk memproses bahan-bahan Semikonduktor tersebut menjadi komponen elektronika, perlu dilakukan proses “Doping” yaitu proses untuk menambahkan ketidakmurnian (Impurity) pada Semikonduktor yang murni (semikonduktor Intrinsik) sehingga dapat merubah sifat atau karakteristik kelistrikannya. Beberapa bahan yang digunakan untuk menambahkan ketidakmurnian semikonduktor antara lain adalah Arsenic, Indium dan Antimony. Bahan-bahan tersebut sering disebut dengan “Dopant”, sedangkan Semikonduktor yang telah melalui proses “Doping” disebut dengan Semikonduktor Ekstrinsik.

TYPE ATAU JENIS SEMIKONDUKTOR

   Semikonduktor yang telah dilalui proses Doping yaitu Semikonduktor yang Impurity (ketidakmurnian) atau Semikonduktor Ekstrinsik yang siap menjadi Komponen Elektronika dapat dibedakan menjadi 2 Jenis yaitu :

  • N-Type semikonduktor

Dikatakan N-type karena Semikonduktor jenis ini pembawa muatannya (Charge Carrier) adalah terdiri dari Elektron. Elektron adalah bermuatan Negatif sehingga disebut dengan Tipe Negatif atau N-type.
Pada Semikonduktor yang berbahan Silicon (Si), Proses Doping dengan menambahkan Arsenic atau Antimony akan menjadikan Semikonduktor tersebut sebagai N-type Semikonduktor.
Terdapat 2 (dua) pembawa muatan atau charge Carrier dalam N-type Semikonduktor yakni Elektron sebagai Majority Carrier dan Hole sebagai Minority Carrier.


  • P-Type Semikonduktor

Dikatakan P-type karena Semikonduktor jenis ini kekurangan Elektron atau disebut dengan “Hole”. Ketika pembawa muatannya adalah Hole maka Semikonduktor tersebut merupakan Semikonduktor bermuatan Positif.
Pada Semikonduktor yang berbahan Silicon (Si), Proses Doping dengan menambahkan Indium akan menjadikan Semikondukter tersebut sebagai P-type Semikonduktor.
2 (dua) pembawa muatan yang terdapat dalam P-type Semikonduktor adalah Hole sebagai Majority Carrier dan Elektron sebagai Minority Carrier). 


2. KONDUKTOR
  • Panas

   Konduktor termal atau biasa kita panggil dengan konduktor panas atau lebih sering pula kita panggil dengan nama konduktor saja, merupakan bahan yang dengan mudah mampu menghantarkan panas. Panas merambat dari ujung dengan suhu tinggi ke ujung lain dengan suhu yang lebih rendah.

  • listrik

   Pengertian Konduktor dalam listrik yaitu bahan-bahan yang dengan mudah apa bila di beri sumber tegangan menghantarkan arus listrik. Sama halnya dengan panas, arus listrik mengalir dari potensial tinggi ke potensial yang lebih rendah, satuan dari potensial listrik adalah Voltage (tegangan) dengan lambang V.

Pemilihan bahan Konduktor
Bahan Konduktor terdapat beberapa macam diantaranya Emas, Tembaga. Alumunium, Besi, Perak, dan sebagainya. Konduktor terbaik
merupakan konduktor dengan nilai tahanan yang kecil atau kalau bisa yang tidak memiliki nilai tahanan. Sebenarnya emas merupakan bahan konduktor dengan nilai tahanan paling kecil, namun berhubung harga jual emas yang mahal sehingga kebanyakan konduktor yang digunakan adalah bahan tembaga dan alumunium., misalnya saja untuk kabel dirumah anda yang menggunakan tembaga.


3. ISOLATOR
  • Panas
Merupakan bahan yang tidak bisa (sangat sulit) untuk menghantarkan panas (kalor).

  • Listrik
Merupakan bahan yang sangat sulit (tidak bisa) untuk menghantarkan arus listrik.

Penggunaan
Bahan-bahan isolator banyak sekali digunakan dalam kehidupan sehari-hari, contohnya saja pada kulit kabel, pemegang panci, pemegang solder, dan masih banyak lagi. Berbanding terbalik dengan bahan konduktor, bahan isolator merupakan bahan yang memiliki nilai tahanan yang sangat besar. Semakin besar nilai tahanannya maka akan semakin baik isolator tersebut menahan panas maupun arus listrik.

Pengertian Dan Struktur Atom

PENGERTIAN DAN STRUKTUR ATOM


Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang mengelilinginya.[1] Inti atom mengandung campuran proton yang bermuatan positif dan neutron yang bermuatan netral (terkecuali pada Hidrogen-1 yang tidak memiliki neutron). Elektron-elektron pada sebuah atom terikat pada inti atom oleh gaya elektromagnetik. Demikian pula sekumpulan atom dapat berikatan satu sama lainnya membentuk sebuah molekul. Atom yang mengandung jumlah proton dan elektron yang sama bersifat netral, sedangkan yang mengandung jumlah proton dan elektron yang berbeda bersifat positif atau negatif dan merupakan ion. Atom dikelompokkan berdasarkan jumlah proton dan neutron pada inti atom tersebut. Jumlah proton pada atom menentukan unsur kimia atom tersebut, dan jumlah neutron menentukan isotop unsur tersebut.

Istilah atom berasal dari Bahasa Yunani, yang berarti tidak dapat dipotong ataupun sesuatu yang tidak dapat dibagi-bagi lagi. Konsep atom sebagai komponen yang tak dapat dibagi-bagi lagi pertama kali diajukan oleh para filsuf India dan Yunani. Pada abad ke-17 dan ke-18, para kimiawan meletakkan dasar-dasar pemikiran ini dengan menunjukkan bahwa zat-zat tertentu tidak dapat dibagi-bagi lebih jauh lagi menggunakan metode-metode kimia. Selama akhir abad ke-19 dan awal abad ke-20, para fisikawan berhasil menemukan struktur dan komponen-komponen subatom di dalam atom, membuktikan bahwa ‘atom’ tidaklah tak dapat dibagi-bagi lagi. Prinsip-prinsip mekanika kuantum yang digunakan para fisikawan kemudian berhasil memodelkan atom.


Relatif terhadap pengamatan sehari-hari, atom merupakan objek yang sangat kecil dengan massa yang sama kecilnya pula. Atom hanya dapat dipantau menggunakan peralatan khusus seperti mikroskop penerowongan payaran. Lebih dari 99,9% massa atom berpusat pada inti atom, dengan proton dan neutron yang bermassa hampir sama. Setiap unsur paling tidak memiliki satu isotop dengan inti yang tidak stabil yang dapat mengalami peluruhan radioaktif. Hal ini dapat mengakibatkan transmutasi yang mengubah jumlah proton dan neutron pada inti. Elektron yang terikat pada atom mengandung sejumlah aras energi, ataupun orbital, yang stabil dan dapat mengalami transisi di antara aras tersebut dengan menyerap ataupun memancarkan foton yang sesuai dengan perbedaan energi antara aras. Elektron pada atom menentukan sifat-sifat kimiawi sebuah unsur dan memengaruhi sifat-sifat magnetis atom tersebut.

Pengertian Ikatan Kovalen

"IKATAN KOVALEN"

A. PENGERTIAN IKATAN KOVALEN
Ikatan Kovalen adalah ikatan yang terjadi karena pemakaian pasangan elektron secara bersama oleh 2 atom yang berikatan. Ikatan kovalen terjadi akibat ketidakmampuan salah 1 atom yang akan berikatan untuk melepaskan elektron (terjadi pada atom-atom non logam).

B. JENIS-JENIS IKATAN KOVALEN
1. Ikatan Kovalen Tunggal
Contoh:
1H = 1
9F = 2, 7
Atom H memiliki 1 elektron valensi sedangkan atom F memiliki 7 elektron valensi. Agar atom H dan F memiliki konfigurasi elektron yang stabil, maka atom H dan atom F masing-masing memerlukan 1 elektron tambahan (sesuai dengan konfigurasi elektron He dan Ne). Jadi, atom H dan F masing-masing meminjamkan 1 elektronnya untuk dipakai bersama.
2. Ikatan Kovalen Rangkap Dua
Contoh:
Ikatan yang terjadi antara atom O dengan O membentuk molekul O2
Konfigurasi elektronnya :
8O= 2, 6
Atom O memiliki 6 elektron valensi, maka agar diperoleh konfigurasi elektron yang stabil tiap-tiap atom O memerlukan tambahan elektron sebanyak 2. Ke-2 atom O saling meminjamkan 2 elektronnya, sehingga ke-2 atom O tersebut akan menggunakan 2 pasang elektron secara bersama.
3. Ikatan Kovalen Rangkap Tiga
Contoh:
Ikatan yang terjadi antara atom N dengan N membentuk molekul N2
Konfigurasi elektronnya :
7N = 2, 5
Atom N memiliki 5 elektron valensi, maka agar diperoleh konfigurasi elektron yang stabil tiap-tiap atom N memerlukan tambahan elektron sebanyak 3. Ke-2 atom N saling meminjamkan 3 elektronnya, sehingga ke-2 atom N tersebut akan menggunakan 3 pasang elektron secara bersama.

4. Ikatan Kovalen Koordinasi / Koordinat / Dativ
Adalah ikatan yang terbentuk dengan cara penggunaan bersama pasangan elektron yang berasal dari salah 1 atom yang berikatan [Pasangan Elektron Bebas (PEB)], sedangkan atom yang lain hanya menerima pasangan elektron yang digunakan bersama.
Pasangan elektron ikatan (PEI) yang menyatakan ikatan dativ digambarkan dengan tanda anak panah kecil yang arahnya dari atom donor menuju akseptor pasangan elektron.
Contoh:
Terbentuknya senyawa BF3 – NH3
Ikatan kovalen dapat mengalami polarisasi, maka dari itu dikenal ada 2 :
  • Ikatan kovalen polar
  • Ikatan kovalen nonpolar
Suatu ikatan kovalen disebut polar, jika Pasangan Elektron Ikatan (PEI) tertarik lebih kuat ke salah 1 atom.
Contoh 1 :
Molekul HCl
Meskipun atom H dan Cl sama-sama menarik pasangan elektron, tetapi keelektronegatifan Cl lebih besar daripada atom H. Akibatnya atom Cl menarik pasangan elektron ikatan (PEI) lebih kuat daripada atom H sehingga letak PEI lebih dekat ke arah Cl (akibatnya terjadi semacam kutub dalam molekul HCl).
Suatu ikatan kovalen dikatakan nonpolar jika PEI (pasangan elektron ikatan) tertarik sama kuat ke semua atom.
Jadi, kepolaran suatu ikatan kovalen disebabkan oleh adanya perbedaan keelektronegatifan antara atom-atom yang berikatan. Sebaliknya, suatu ikatan kovalen dikatakan non polar (tidak berkutub), jika PEI tertarik sama kuat ke semua atom.


pengertian Miniature Circuit Breaker (MCB)

MCB (Miniature Circuit Breaker)

MCB adalah singkatan dari Miniature Circuit Breaker, Fungsi MCB adalah sebagai peralatan pengaman terhadap gangguan hubung singkat dan beban lebih yang mana akan memutuskan secara otomatis apabila melebihi dari arus nominalnya

MCB biasanya digunakan oleh PLN sebagai pembatas daya pada pelanggan pelanggan daya rendah (daya 450VA - 33.000VA). Letaknya dibawah kWh meter dan didalam panel bagi instalasi (biasanya didalam ruangan).

MCB merupakan sebuah pengaman yang bekerja berdasarkan prinsip Bimetal, dengan beberapa elemen operasi yaitu :
1. Terminal trip (Bimetal)
2. Elektromagnetik trip (coil)
3. Pemadam busur api
4. Mekanisme pemutusan

Berdasarkan konstruksinya, maka MCB memiliki dua cara pemutusan yaitu : pemutusan bersarkan panas dan berdasarkan elektromagnetik.

Pemutusan berdasarkan panas dilakukan oleh batang bimetal, yaitu : perpaduan dua buah logam yang berbeda koefisien muai logamnya. Jika terjadi arus lebih akibat beban lebih, maka bimetal akan melengkung akibat panas dan akan mendorong tuas pemutus tersebut untuk melepas kunci mekanisnya.
Pemutusan berdasarkan lektromagnetik dilakukan oleh koil, jika terjadi hubung singkat maka koil akan terinduksi dan daerah sekitarnya akan terdapat medan magnet sehingga akan menarik poros dan mengoperasikan tuas pemutus. Untuk menghindari dari efek lebur, maka panas yang tinggi dapat terjadi bunga api yang pada saat pemutusan akan diredam oleh pemadam busur api (arc-shute) dan bunga api yang timbul akan masuk melalui bilah-bilah arc-shute tersebut.
Keuntungan sebuah pengaman otomatis adalah dapat segera digunakan lagi setelah terjadi pemutusan, dalam pengaman otomatis terdapat kopeling jalan bebas karena kopeling ini otomatnya tidak bisa digunakan kembali kalau gangguanya belum diperbaiki.

Sifat dari MCB adalah :
a. Arus beban dapat diputuskan bila panas yang ditimbulkan melebihi dari panas yang di izinkan.
b. Arus hubung singkat dapat diputuskan tanpa adanya perlambatan.
c. Setelah dilakukan perbaikan , maka MCB dapat digunakan kembali.