Rabu, 30 Maret 2016

Karakteristik Motor Kompon DC

Karakteristik Motor Kompon DC


Motor Kompon DC merupakan gabungan motor seri dan shunt. Pada motor kompon, gulungan medan (medan shunt) dihubungkan secara paralel dan seri dengan gulungan dynamo (A) seperti yang ditunjukkan dalam gambar 6. Sehingga, motor kompon memiliki torque penyalaan awal yang bagus dan kecepatan yang stabil. Makin tinggi persentase penggabungan (yakni persentase gulungan medan yang dihubungkan secara seri), makin tinggi pula torque penyalaan awal yang dapat ditangani oleh motor ini.


Gmabar Karakteristik Motor Kompom DC



Pengertian Motor DC

MOTOR DC

Pengertian Motor DC

Motor listrik merupakan perangkat elektromagnetis yang mengubah energi listrik menjadi energi mekanik. Energi mekanik ini digunakan untuk, misalnya memutar impeller pompa, fan atau blower, menggerakan kompresor, mengangkat bahan,dll. Motor listrik digunakan juga di rumah (mixer, bor listrik, fan angin) dan di industri. Motor listrik kadangkala disebut “kuda kerja” nya industri sebab diperkirakan bahwa motor-motor menggunakan sekitar 70% beban listrik total di industri.

            Motor DC memerlukan suplai tegangan yang searah pada kumparan medan untuk diubah menjadi energi mekanik. Kumparan medan pada motor dc disebut stator (bagian yang tidak berputar) dan kumparan jangkar disebut rotor (bagian yang berputar). Jika terjadi putaran pada kumparan jangkar dalam pada medan magnet, maka akan timbul tegangan (GGL) yang berubah-ubah arah pada setiap setengah putaran, sehingga merupakan tegangan bolak-balik. Prinsip kerja dari arus searah adalah membalik phasa tegangan dari gelombang yang mempunyai nilai positif dengan menggunakan komutator, dengan demikian arus yang berbalik arah dengan kumparan jangkar yang berputar dalam medan magnet. Bentuk motor paling sederhana memiliki kumparan satu lilitan yang bisa berputar bebas di antara kutub-kutub magnet permanen.
Gambar 1. Motor DC

Catu tegangan dc dari baterai menuju ke lilitan melalui sikat yang menyentuh komutator, dua segmen yang terhubung dengan dua ujung lilitan. Kumparan satu lilitan pada gambar di atas disebut angker dinamo. Angker dinamo adalah sebutan untuk komponen yang berputar di antara medan magnet.

Prinsip Dasar Cara Kerja
 Jika arus lewat pada suatu konduktor, timbul medan magnet di sekitar konduktor. Arah medan magnet ditentukan oleh arah aliran arus pada konduktor. 

Gambar 2. Medan Magnet Yang Membawa Arus Mengelilingi Konduktor

Aturan Genggaman Tangan Kanan bisa dipakai untuk menentukan arah garis fluks di sekitar konduktor. Genggam konduktor dengan tangan kanan dengan jempol mengarah pada arah aliran arus, maka jari-jari anda akan menunjukkan arah garis fluks. Gambar 3 menunjukkan medan magnet yang terbentuk di sekitar konduktor berubah arah karena bentuk U.

Gambar 3. Medan Magnet Yang Membawa Arus Mengelilingi Konduktor

Catatan :
Medan magnet hanya terjadi di sekitar sebuah konduktor jika ada arus mengalir pada konduktor tersebut.

Pada motor listrik konduktor berbentuk U disebut angker dinamo.
Gmabar 4. Medan Magnet Mengeliligi Konduktor Dan Diantara Kutub

Jika konduktor berbentuk U (angker dinamo) diletakkan di antara kutub uatara dan selatan yang kuat medan magnet konduktor akan berinteraksi dengan medan magnet kutub. Lihat gambar 5.
Gambar 5. Reaksi Garis Fluks

Lingkaran bertanda A dan B merupakan ujung konduktor yang dilengkungkan (looped conductor). Arus mengalir masuk melalui ujung A dan keluar melalui ujung B.

Medan konduktor A yang searah jarum jam akan menambah medan pada kutub dan menimbulkan medan yang kuat di bawah konduktor. Konduktor akan berusaha bergerak ke atas untuk keluar dari medan kuat ini. Medan konduktor B yang berlawanan arah jarum jam akan menambah medan pada kutub dan menimbulkan medan yang kuat di atas konduktor. Konduktor akan berusaha untuk bergerak turun agar keluar dari medan yang kuat tersebut. Gaya-gaya tersebut akan membuat angker dinamo berputar searah jarum jam.

Mekanisme kerja untuk seluruh jenis motor secara umum :
§  Arus listrik dalam medan magnet akan memberikan gaya.
§  Jika kawat yang membawa arus dibengkokkan menjadi sebuah lingkaran / loop, maka kedua sisi loop, yaitu pada sudut kanan medan magnet, akan mendapatkan gaya pada arah yang berlawanan.
§  Pasangan gaya menghasilkan tenaga putar / torque untuk memutar kumparan.
§  Motor-motor memiliki beberapa loop pada dinamonya untuk memberikan tenaga putaran yang lebih seragam dan medan magnetnya dihasilkan oleh susunan elektromagnetik yang disebut kumparan medan.

Pada motor dc, daerah kumparan medan yang dialiri arus listrik akan menghasilkan medan magnet yang melingkupi kumparan jangkar dengan arah tertentu. Konversi dari energi listrik menjadi energi mekanik (motor) maupun sebaliknya berlangsung melalui medan magnet, dengan demikian medan magnet disini selain berfungsi sebagai tempat untuk menyimpan energi, sekaligus sebagai tempat berlangsungnya proses perubahan energi, daerah tersebut dapat dilihat pada gambar di bawah ini :
Gambar Prinsip Kerja Motor DC

Agar proses perubahan energi mekanik dapat berlangsung secara sempurna, maka tegangan sumber harus lebih besar daripada tegangan gerak yang disebabkan reaksi lawan. Dengan memberi arus pada kumparan jangkar yang dilindungi oleh medan maka menimbulkan perputaran pada motor.

Dalam memahami sebuah motor, penting untuk mengerti apa yang dimaksud dengan beban motor. Beban dalam hal ini mengacu kepada keluaran tenaga putar / torque sesuai dengan kecepatan yang diperlukan. Beban umumnya dapat dikategorikan ke dalam tiga kelompok :
§  Beban torque konstan  adalah beban dimana permintaan keluaran energinya bervariasi dengan kecepatan operasinya namun torquenya tidak bervariasi. Contoh beban dengan torque konstan adalah corveyors, rotary kilns, dan pompa displacement konstan.
§  Beban dengan variabel torque adalah beban dengan torque yang bervariasi dengan kecepatn operasi. Contoh beban dengan variabel torque adalah pompa sentrifugal dan fan (torque bervariasi sebagai kuadrat kecepatan).
Peralatan Energi Listrik : Motor Listrik.
§  Beban dengan energi konstan adalah beban dengan permintaan torque yang berubah dan berbanding terbalik dengan kecepatan. Contoh untuk beban dengan daya konstan adalah peralatan-peralatan mesin.

Prinsip Arah Putaran Motor
            Untuk menentukan arah putaran motor digunakan kaedah Flamming tangan kiri. Kutub-kutub magnet akan menghasilkan medan magnet dengan arah dari kutub utara ke kutub selatan. Jika medan magnet memotong sebuah kawat penghantar yang dialiri arus searah dengan empat jari, maka akan timbul gerak searah ibu jari. Gaya ini disebut gaya Lorentz, yang besarnya sama dengan F.
            Prinsip motor : aliran arus di dalam penghantar yang berada di dalam pengaruh medan magnet akan menghasilkan gerakan. Besarnya gaya pada penghantar akan bertambah besar jika arus yang melalui penghantar bertambah besar.
Contoh :
Sebuah motor DC mempunyai kerapatan medan magnet 0,8 T. Di bawah pengaruh medan magnet terdapat 400 kawat penghantar dengan arus 10A. Jika panjang penghantar seluruhnya 150 mm, tentukan gaya yang ada pada armature.
Jawab :
F = B.I..z = 0,8 (Vs/m2). 10A. 0,15 m.400
   = 480 (Vs.A/m)
   = 480 (Ws/m) = 480 N.

Electromotive Force (EMF) / Gaya Gerak Listrik

EMF induksi biasanya disebut EMF Counter. atau EMF kembali. EMF kembali artinya adalah EMF tersebut ditimbulkan oleh angker dinamo yang yang melawan tegangan yang diberikan padanya.

Teori dasarnya adalah jika sebuah konduktor listrik memotong garis medan magnet maka timbul ggl pada konduktor.

Gamabar 6. E.M.F kembali

EMF induksi terjadi pada motor listrik, generator serta rangkaian listrik dengan arah berlawanan terhadap gaya yang menimbulkannya.
HF. Emil Lenz mencatat  pada tahun 1834 bahwa “arus induksi selalu berlawanan arah dengan gerakan atau perubahan yang menyebabkannya”. Hal ini disebut sebagai Hukum Lenz.
Timbulnya EMF tergantung pada:
·           kekuatan garis fluks magnet
·           jumlah lilitan konduktor
·           sudut perpotongan fluks magnet dengan konduktor
·           kecepatan konduktor memotong garis fluks magnet
Tidak ada arus induksi yang terjadi jika angker dinamo diam.

Mengatur Kecepatan dengan Field

Berdasarkan persamaan di atas kita juga dapat memvariasikan kecepatan motor dc dengan memvariasikan field flux Φ. Tegangan armature Es tetap dijaga konstan agar numerator pada persamaan di atas juga konstan. Oleh sebab itu, kecepatan motor sekarang berubah perbandingannnya ke flux Φ; jika kita menaikkan fluxnya, kecepatan akan jatuh, dan sebaliknya.
            Metode dari speed control ini seringkali digunakan saat motor harus dijalankan diatas kecepatan rata-ratanya, disebut base speed. Untuk mengatur flux ( dan kecepatannya), kita menghubungkan rheostat Rf  secara seri dengan fieldnya.

            Untuk mengerti metode speed control, pada gambar di atas awalnya berjalan pada kecepatan konstan. Counter-emf Eo sedikit lebih rendah dari tegangan suplai armature Es, karena penurunan IR armature. Jika tiba-tiba hambatan dari rheostat ditingkatkan, baik exciting current Ix dan flux Φ akan berkurang. Hal ini segera mengurangi cemf Eo, menyebabkan arus armature I melonjak ke nilai yang lebih tinggi. Arus berubah secara dramatis karena nilainya tergantung pada perbedaam yang sangat kecil antara Es  dan Eo. Meskipun fieldnya lemah, motor mengembangkan torsi yang lebih besar dari sebelumnya. Itu akan mempercepat sampai Eo hampir sama dengan Es.
            Untuk lebih jelasnya, untuk mengembangkan Eo yang sama dengan fluks yang lebih lemah, motor harus berputar lebih cepat. Oleh karena itu kita dapat meningkatkan kecepatan motor di atas nilai nominal dengan memperkenalkan hambatan di dalam seri dengan field. Untuk shunt-wound motors, metode dari speed control memungkinkan high-speed/base-speed rasio setinggi 3 : 1. Range broader speed cenderung menghasilkan ketidakstabilan dan miskin pergantian.
            Di bawah kondisi-kondisi abnormal tertentu, flux mungkin akan drop ke nilai rendah yang berbahaya. Sebagai contoh, jika arus exciting dari motor shunt sengaja diputus, satu-satunya flux yang tersisa adalah remanent magnetism (residual magnetism) di kutub. Flux ini terlalu kecil bagi motor untuk berputar pada kecepatan tinggi yang berbahaya untuk menginduksi cemf yang diharuskan. Perangkat keamanan diperkenalkan untuk mencegah kondisi seperti pelarian.