Senin, 23 Mei 2016

Makalah Sistem SCADA (Supervisory Control And Data Acquissition)

SCADA
(SUPERVISORY CONTROL AND DATA ACQUISSITION)

1. Tujuan SCADA

Dengan adanya  SCADA sebagai sistem yang memonitor dan mengontrol sistem distribusi listrik diharapkan dapat mencapai beberapa tujuan yakni :
Ø  Mempercepat proses pemulihan supply tenaga listrik bagi konsumen yang tidak mengalami gangguan
Ø  Memperkecil kWh padam akibat gangguan atau pemadaman
Ø  Memantau performa jaringan untuk menyusun perbaikan atau pengembangan sistem jaringan 20 kV
Ø  Mengusahakan optimasi pembebanan jaringan 20 kV

2. Pengertian SCADA
Supervisory Control and Data Acquisition (SCADA) merupakan sistem pada tenaga listrik yang berfungsi mengawasi, mengendalikan dan mengakuisisi data listrik secara real time.
Sistem SCADA merupakan perpaduan antara sistem komputerisasi dan telekomunikasi. Media komunikasi yang umum digunakan adalah PLC (Power Line Carrier), fiber optik dan radio link. Pada awalnya radio link dan PLC banyak digunakan, terutama karena penggunaan PLC yang tidak memerlukan jaringan khusus namun cukup menggunakan saluran transmisi tenaga listrik yang ada dengan frekuensi yang lebih tinggi dari frekuensi transmisi listrik. Namun pada perkembangannya penggunaan PLC mulai beralih ke fiber optik dikarenakan kecepatan bit persecond  yang jauh diatas PLC.

3. Fungsi SCADA
Scada berfungsi mengambil data dari pusat pembangkit dan gardu induk kemudian mengolah informasi yang diterima dan memberi reaksi yang ditimbulkan dari hasil pengolahan informasi. Secara umum fungsi SCADA yaitu:
1. Pengambilan dan penyampaian data
2. Proses monitoring
3. Fungsi control
4. Perhitungan dan pelaporan


Informasi pengukuran dan status indikasi dari sistem tenaga listrik dikumpulkan dengan menggunakan peralatan yang ditempatkan di pusat pembangkit dan gardu induk. Demikian juga fungsi kontrol dikirim dari pusat pengatur (Control Center) ke peralatan yang berada pada gardu induk dan pusat pembangkit. Penyampaian dan pemrosesan data dilakukan secara real time.
Beberapa istilah dalam sistem SCADA :
1. Telesignaling
       Telesignaling adalah pengambilan status peralatan tenaga listrik di Gardu Induk atau Pusat Pembangkit untuk dapat dimonitor di Pusat Pengatur, berupa sinyal Alarm dan Indikasi yang terhubung ke modul digital input pada RTU (Remote Terminal Unit). Sinyal Alarm memiliki satu keadaan , yaitu keadaan ON atau OFF. Sedangkan Indikasi memiliki dua keadaan, dimana satu keadaan tertutup (close) dan terbuka (open), seperti pada PMT, PMS rel, PMS line, dan PMS tanah.
2. Telecontrol
   Telecontrol adalah pengiriman perintah dari pusat pengatur (Control Center) ke    RTU (Remote Terminal Unit) untuk merubah status peralatan listrik.
3. Telemetering
     Telemetering adalah proses pengambilan besaran listrik yang terukur pada gardu induk atau pusat pembangkit untuk dapat dimonitor di pusat pengatur (Control Center)

4. Komponen Dasar SCADA
1.   Komponen-komponen pusat pengendalian, Control Centre, berupa computer-komputer;
2.   Komponen-komponen perangkat interface dengan rangkaian proses di gardu induk maupun di gardu distribusi seperti RTU, perangkat komunikasi, perangkat pekerjaan adaptasi dan perangkat-perangkat pencatu daya;
3.   Perangkat meter-meter dan terminal pelanggan untuk otomatsasi.
4.   Sarana telekomunikasi yang diperlukan untuk memungkinkan dua atau lebih terminal dapat saling berkomunikasi.

1. Control Centre
      Control centre merupakan bagian dari system pengendalian yang akan dibangun setelah gardu-gardu yang akan disupervisi disiapkan dan semua kebutuhan infrastruktur seperti sarana telekomunikasi dan bangunan-bangunan gardu induk dan lain-lain telah tersedia.
Pengembangan perangkat-perangkat RTU untuk keperluan gardu induk, gardu hubung dan gardu distribusi secara bertahap mengikuti perkembangan jaringan dengan tetap memperhatika keperluan dan urgensi dari setiap titik remote control. Hal ini dimaksudkan agar pelaksanaan instalasi dari perencanaan system SCADA dapat dilaksanakan secara setahap demi setahap tanpa perlu melaksanakannya secara keseluruhan pada waktu yang sama terutama bila dipertimbangkan pelaksanaan otomatisasi pada bagian-bagian jaringan tertentu belum mendesak.
2.Perangkat-perangkat RTU
            Pada setiap pengimplementasian RTU untuk gardu induk maka semua jaringan out going dan incoming 20 kV serta semua jaringan transmisi 150 kV dan pembangkit-pembangkitnya harus dapat dipantau dan di-remote control baik status perlatan-peralatannya maupun besaran-besaran listriknya. Sedangkan pada gardu hubung semua pemutus-pemutus daya LBS harus dapat dimonitor dan di-remote control.
3.Perangkat-perangkat Meter Pelanggan Beserta Perangkat Interface
            Perlu dilakukan pengembangan dan penggantian meter yang dilengkapi dengan perangkat elektronik untuk memungkinkan dilaksanakannya komunikasi elektronis pelanggan dengan remote centre, pembacaan meter, remote control, dan lain sebagainya.
            Penerapan otomatisasi pelanggan tersebut akan dilaksanakan dengan terlebih dahulu pada jaringan spindle 20 kV yang banyak pelanggan-pelanggan besarnya dengan menggunakan sarana telekomunikasi distribution line carrier. Hal ini mengingat konfigurasi distribution line carrier yang tersambung pada suatu spindle akan dapat melayani semua pelanggan yang tersambung ke spindle tersebut dengan komunikasi broadcasting.

4.Sarana Penunjang
            Sarana penunjang seperti media komunikasi, catu-catu daya dan bangunan-bangunan merupakan bagian yang sangat penting dan tidak terpisahkan dari suatu system pengendalian tenaga listrik. Dengan studi yang konprehensif dan terpadu dapat dilakukan pengembangannya secara efektif dan setahap demi setahap mengikuti tahapan-tahapan pengintegrasian setiap gardu-gardu baru ke dalam system pusat pengendalian.

5.Penjadwalan Pengembangan
            Pada umumnya penjadwalan pengembangan SCADA mencakup beberapa langkah-langkah, yaitu :
o   Feasibility study
o   Proses alokasi dana
o   Penunjukan konsultan
o   Survey lapangan
o   Pembuatan tender dokumen
o   Tender proses
o   Penandatanganan kontrak
o   Implementasi
o   Test uji coba.
o    
5. Keuntungan-keuntungan Penerapan Sistem SCADA/EMS
            Secara umum keuntungan-keuntungan yang dapat kita peroleh dengan menerapkan system SCADA/EMS pada kelistrikan, yaitu:
  1. Dengan menggunakan system SCADA/EMS pada system kelsitrikan dapat diperoleh dengan system pengoperasian dengan organisasi yang lebih ramping dan sederhana. Pada prinsipnya, dengan adanya system SCADA/EMS system gardu induk tanpa orang seharusnya dapat dilakukan, dimana hal ini dapat mengurangi biaya-biaya yang cukup signifikan sebagai bahan pertimbangan dalam penerapan system SCADA.
  2. Keuntungan lain yang dapat diperoleh dari pengoperasian system kelistrikan dengan menggunakan system SCAD/EMS adalah system pengoperasian yang lebih ekonomis. Dengan menggunakan system SCADA/EMS system pengoperasian kelistrikan dapat menghemat keseluruhan biaya operasi, misalya dengan load forecast dan unit-unit komitmen yang lebih baik, optimasi rugi-rugi transmisi maupun pembangkit dan lain sebagainya yang secara keseluruhan akan mengoptimumkan sumber daya secara ekonomis.
  3. Peningkatan keandalan system. Factor-faktor pertimbangan pengimplementasian SCADA/EMS bukan hanya terdiri atas pertimbangan ekonomis semata-mata melainkan juga factor sekuriti dan keandalan. Sejauh ini diakui masih sulit menjelaskan keuntungan-keuntungan diatas secara kuantitatif dalam arti nilai ekonomis yang akan diperoleh bila system dilengkapi dengan SCADA/EMS. Biasanya bila terjadi gangguan serius yang menyebabkan pemadaman total (black out), baru akan terfikirkan betapa pentingnya sarana dan fasilitas yang dapat digunakan untuk membantu mengoperasikan dan menganalisa keandalan system. Dari berbagai pendapat disepakati keandalan system akan bisa dinaikkan mulai 20% hingga 50% bila system kelistrikan dioperasikan dengan system SCADA/EMS. Angka tersebut diharapkan akan semakin meningkat seiring dengan kemajuan fungsi-fungsi perangkat lunak aplikasi yang terus berkembang.



Rabu, 30 Maret 2016

Karakteristik Motor Kompon DC

Karakteristik Motor Kompon DC


Motor Kompon DC merupakan gabungan motor seri dan shunt. Pada motor kompon, gulungan medan (medan shunt) dihubungkan secara paralel dan seri dengan gulungan dynamo (A) seperti yang ditunjukkan dalam gambar 6. Sehingga, motor kompon memiliki torque penyalaan awal yang bagus dan kecepatan yang stabil. Makin tinggi persentase penggabungan (yakni persentase gulungan medan yang dihubungkan secara seri), makin tinggi pula torque penyalaan awal yang dapat ditangani oleh motor ini.


Gmabar Karakteristik Motor Kompom DC



Pengertian Motor DC

MOTOR DC

Pengertian Motor DC

Motor listrik merupakan perangkat elektromagnetis yang mengubah energi listrik menjadi energi mekanik. Energi mekanik ini digunakan untuk, misalnya memutar impeller pompa, fan atau blower, menggerakan kompresor, mengangkat bahan,dll. Motor listrik digunakan juga di rumah (mixer, bor listrik, fan angin) dan di industri. Motor listrik kadangkala disebut “kuda kerja” nya industri sebab diperkirakan bahwa motor-motor menggunakan sekitar 70% beban listrik total di industri.

            Motor DC memerlukan suplai tegangan yang searah pada kumparan medan untuk diubah menjadi energi mekanik. Kumparan medan pada motor dc disebut stator (bagian yang tidak berputar) dan kumparan jangkar disebut rotor (bagian yang berputar). Jika terjadi putaran pada kumparan jangkar dalam pada medan magnet, maka akan timbul tegangan (GGL) yang berubah-ubah arah pada setiap setengah putaran, sehingga merupakan tegangan bolak-balik. Prinsip kerja dari arus searah adalah membalik phasa tegangan dari gelombang yang mempunyai nilai positif dengan menggunakan komutator, dengan demikian arus yang berbalik arah dengan kumparan jangkar yang berputar dalam medan magnet. Bentuk motor paling sederhana memiliki kumparan satu lilitan yang bisa berputar bebas di antara kutub-kutub magnet permanen.
Gambar 1. Motor DC

Catu tegangan dc dari baterai menuju ke lilitan melalui sikat yang menyentuh komutator, dua segmen yang terhubung dengan dua ujung lilitan. Kumparan satu lilitan pada gambar di atas disebut angker dinamo. Angker dinamo adalah sebutan untuk komponen yang berputar di antara medan magnet.

Prinsip Dasar Cara Kerja
 Jika arus lewat pada suatu konduktor, timbul medan magnet di sekitar konduktor. Arah medan magnet ditentukan oleh arah aliran arus pada konduktor. 

Gambar 2. Medan Magnet Yang Membawa Arus Mengelilingi Konduktor

Aturan Genggaman Tangan Kanan bisa dipakai untuk menentukan arah garis fluks di sekitar konduktor. Genggam konduktor dengan tangan kanan dengan jempol mengarah pada arah aliran arus, maka jari-jari anda akan menunjukkan arah garis fluks. Gambar 3 menunjukkan medan magnet yang terbentuk di sekitar konduktor berubah arah karena bentuk U.

Gambar 3. Medan Magnet Yang Membawa Arus Mengelilingi Konduktor

Catatan :
Medan magnet hanya terjadi di sekitar sebuah konduktor jika ada arus mengalir pada konduktor tersebut.

Pada motor listrik konduktor berbentuk U disebut angker dinamo.
Gmabar 4. Medan Magnet Mengeliligi Konduktor Dan Diantara Kutub

Jika konduktor berbentuk U (angker dinamo) diletakkan di antara kutub uatara dan selatan yang kuat medan magnet konduktor akan berinteraksi dengan medan magnet kutub. Lihat gambar 5.
Gambar 5. Reaksi Garis Fluks

Lingkaran bertanda A dan B merupakan ujung konduktor yang dilengkungkan (looped conductor). Arus mengalir masuk melalui ujung A dan keluar melalui ujung B.

Medan konduktor A yang searah jarum jam akan menambah medan pada kutub dan menimbulkan medan yang kuat di bawah konduktor. Konduktor akan berusaha bergerak ke atas untuk keluar dari medan kuat ini. Medan konduktor B yang berlawanan arah jarum jam akan menambah medan pada kutub dan menimbulkan medan yang kuat di atas konduktor. Konduktor akan berusaha untuk bergerak turun agar keluar dari medan yang kuat tersebut. Gaya-gaya tersebut akan membuat angker dinamo berputar searah jarum jam.

Mekanisme kerja untuk seluruh jenis motor secara umum :
§  Arus listrik dalam medan magnet akan memberikan gaya.
§  Jika kawat yang membawa arus dibengkokkan menjadi sebuah lingkaran / loop, maka kedua sisi loop, yaitu pada sudut kanan medan magnet, akan mendapatkan gaya pada arah yang berlawanan.
§  Pasangan gaya menghasilkan tenaga putar / torque untuk memutar kumparan.
§  Motor-motor memiliki beberapa loop pada dinamonya untuk memberikan tenaga putaran yang lebih seragam dan medan magnetnya dihasilkan oleh susunan elektromagnetik yang disebut kumparan medan.

Pada motor dc, daerah kumparan medan yang dialiri arus listrik akan menghasilkan medan magnet yang melingkupi kumparan jangkar dengan arah tertentu. Konversi dari energi listrik menjadi energi mekanik (motor) maupun sebaliknya berlangsung melalui medan magnet, dengan demikian medan magnet disini selain berfungsi sebagai tempat untuk menyimpan energi, sekaligus sebagai tempat berlangsungnya proses perubahan energi, daerah tersebut dapat dilihat pada gambar di bawah ini :
Gambar Prinsip Kerja Motor DC

Agar proses perubahan energi mekanik dapat berlangsung secara sempurna, maka tegangan sumber harus lebih besar daripada tegangan gerak yang disebabkan reaksi lawan. Dengan memberi arus pada kumparan jangkar yang dilindungi oleh medan maka menimbulkan perputaran pada motor.

Dalam memahami sebuah motor, penting untuk mengerti apa yang dimaksud dengan beban motor. Beban dalam hal ini mengacu kepada keluaran tenaga putar / torque sesuai dengan kecepatan yang diperlukan. Beban umumnya dapat dikategorikan ke dalam tiga kelompok :
§  Beban torque konstan  adalah beban dimana permintaan keluaran energinya bervariasi dengan kecepatan operasinya namun torquenya tidak bervariasi. Contoh beban dengan torque konstan adalah corveyors, rotary kilns, dan pompa displacement konstan.
§  Beban dengan variabel torque adalah beban dengan torque yang bervariasi dengan kecepatn operasi. Contoh beban dengan variabel torque adalah pompa sentrifugal dan fan (torque bervariasi sebagai kuadrat kecepatan).
Peralatan Energi Listrik : Motor Listrik.
§  Beban dengan energi konstan adalah beban dengan permintaan torque yang berubah dan berbanding terbalik dengan kecepatan. Contoh untuk beban dengan daya konstan adalah peralatan-peralatan mesin.

Prinsip Arah Putaran Motor
            Untuk menentukan arah putaran motor digunakan kaedah Flamming tangan kiri. Kutub-kutub magnet akan menghasilkan medan magnet dengan arah dari kutub utara ke kutub selatan. Jika medan magnet memotong sebuah kawat penghantar yang dialiri arus searah dengan empat jari, maka akan timbul gerak searah ibu jari. Gaya ini disebut gaya Lorentz, yang besarnya sama dengan F.
            Prinsip motor : aliran arus di dalam penghantar yang berada di dalam pengaruh medan magnet akan menghasilkan gerakan. Besarnya gaya pada penghantar akan bertambah besar jika arus yang melalui penghantar bertambah besar.
Contoh :
Sebuah motor DC mempunyai kerapatan medan magnet 0,8 T. Di bawah pengaruh medan magnet terdapat 400 kawat penghantar dengan arus 10A. Jika panjang penghantar seluruhnya 150 mm, tentukan gaya yang ada pada armature.
Jawab :
F = B.I..z = 0,8 (Vs/m2). 10A. 0,15 m.400
   = 480 (Vs.A/m)
   = 480 (Ws/m) = 480 N.

Electromotive Force (EMF) / Gaya Gerak Listrik

EMF induksi biasanya disebut EMF Counter. atau EMF kembali. EMF kembali artinya adalah EMF tersebut ditimbulkan oleh angker dinamo yang yang melawan tegangan yang diberikan padanya.

Teori dasarnya adalah jika sebuah konduktor listrik memotong garis medan magnet maka timbul ggl pada konduktor.

Gamabar 6. E.M.F kembali

EMF induksi terjadi pada motor listrik, generator serta rangkaian listrik dengan arah berlawanan terhadap gaya yang menimbulkannya.
HF. Emil Lenz mencatat  pada tahun 1834 bahwa “arus induksi selalu berlawanan arah dengan gerakan atau perubahan yang menyebabkannya”. Hal ini disebut sebagai Hukum Lenz.
Timbulnya EMF tergantung pada:
·           kekuatan garis fluks magnet
·           jumlah lilitan konduktor
·           sudut perpotongan fluks magnet dengan konduktor
·           kecepatan konduktor memotong garis fluks magnet
Tidak ada arus induksi yang terjadi jika angker dinamo diam.

Mengatur Kecepatan dengan Field

Berdasarkan persamaan di atas kita juga dapat memvariasikan kecepatan motor dc dengan memvariasikan field flux Φ. Tegangan armature Es tetap dijaga konstan agar numerator pada persamaan di atas juga konstan. Oleh sebab itu, kecepatan motor sekarang berubah perbandingannnya ke flux Φ; jika kita menaikkan fluxnya, kecepatan akan jatuh, dan sebaliknya.
            Metode dari speed control ini seringkali digunakan saat motor harus dijalankan diatas kecepatan rata-ratanya, disebut base speed. Untuk mengatur flux ( dan kecepatannya), kita menghubungkan rheostat Rf  secara seri dengan fieldnya.

            Untuk mengerti metode speed control, pada gambar di atas awalnya berjalan pada kecepatan konstan. Counter-emf Eo sedikit lebih rendah dari tegangan suplai armature Es, karena penurunan IR armature. Jika tiba-tiba hambatan dari rheostat ditingkatkan, baik exciting current Ix dan flux Φ akan berkurang. Hal ini segera mengurangi cemf Eo, menyebabkan arus armature I melonjak ke nilai yang lebih tinggi. Arus berubah secara dramatis karena nilainya tergantung pada perbedaam yang sangat kecil antara Es  dan Eo. Meskipun fieldnya lemah, motor mengembangkan torsi yang lebih besar dari sebelumnya. Itu akan mempercepat sampai Eo hampir sama dengan Es.
            Untuk lebih jelasnya, untuk mengembangkan Eo yang sama dengan fluks yang lebih lemah, motor harus berputar lebih cepat. Oleh karena itu kita dapat meningkatkan kecepatan motor di atas nilai nominal dengan memperkenalkan hambatan di dalam seri dengan field. Untuk shunt-wound motors, metode dari speed control memungkinkan high-speed/base-speed rasio setinggi 3 : 1. Range broader speed cenderung menghasilkan ketidakstabilan dan miskin pergantian.
            Di bawah kondisi-kondisi abnormal tertentu, flux mungkin akan drop ke nilai rendah yang berbahaya. Sebagai contoh, jika arus exciting dari motor shunt sengaja diputus, satu-satunya flux yang tersisa adalah remanent magnetism (residual magnetism) di kutub. Flux ini terlalu kecil bagi motor untuk berputar pada kecepatan tinggi yang berbahaya untuk menginduksi cemf yang diharuskan. Perangkat keamanan diperkenalkan untuk mencegah kondisi seperti pelarian.








Senin, 11 Januari 2016

Sejarah Internet

Sejarah Internet

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari

Ada usul agar artikel atau bagian ini digabungkan dengan Internet. (Diskusikan)
Internet merupakan jaringan komputer yang dibentuk oleh Departemen Pertahanan Amerika Serikat pada tahun 1969, melalui proyek ARPA yang disebut ARPANET (Advanced Research Project Agency Network), di mana mereka mendemonstrasikan bagaimana dengan hardware dan software komputer yang berbasis UNIX, kita bisa melakukan komunikasi dalam jarak yang tidak terhingga melalui saluran telepon. Proyek ARPANET merancang bentuk jaringan, kehandalan, seberapa besar informasi dapat dipindahkan, dan akhirnya semua standar yang mereka tentukan menjadi cikal bakal pembangunan protokol baru yang sekarang dikenal sebagai TCP/IP (Transmission Control Protocol/Internet Protocol).

Tujuan awal dibangunnya proyek itu adalah untuk keperluan militer. Pada saat itu Departemen Pertahanan Amerika Serikat (US Department of Defense) membuat sistem jaringan komputer yang tersebar dengan menghubungkan komputer di daerah-daerah vital untuk mengatasi masalah bila terjadi serangan nuklir dan untuk menghindari terjadinya informasi terpusat, yang apabila terjadi perang dapat mudah dihancurkan.

Pada mulanya ARPANET hanya menghubungkan 4 situs saja yaitu Stanford Research Institute, University of California, Santa Barbara, University of Utah, di mana mereka membentuk satu jaringan terpadu pada tahun 1969, dan secara umum ARPANET diperkenalkan pada bulan Oktober 1972. Tidak lama kemudian proyek ini berkembang pesat di seluruh daerah, dan semua universitas di negara tersebut ingin bergabung, sehingga membuat ARPANET kesulitan untuk mengaturnya.
Oleh sebab itu ARPANET dipecah manjadi dua, yaitu "MILNET" untuk keperluan militer dan "ARPANET" baru yang lebih kecil untuk keperluan non-militer seperti, universitas-universitas. Gabungan kedua jaringan akhirnya dikenal dengan nama DARPA Internet, yang kemudian disederhanakan menjadi Internet.

Daftar kejadian penting
Tahun
Kejadian
Uni Soviet (sekarang Rusia) meluncurkan wahana luar angkasa, Sputnik.
Sebagai buntut dari "kekalahan" Amerika Serikat dalam meluncurkan wahana luar angkasa, dibentuklah sebuah badan di dalam Departemen Pertahanan Amerika Serikat, Advanced Research Projects Agency (ARPA), yang bertujuan agar Amerika Serikat mampu meningkatkan ilmu pengetahuan dan teknologi negara tersebut. Salah satu sasarannya adalah teknologi komputer.
J.C.R. Licklider menulis sebuah tulisan mengenai sebuah visi di mana komputer-komputer dapat saling dihubungkan antara satu dengan lainnya secara global agar setiap komputer tersebut mampu menawarkan akses terhadap program dan juga data. Pada tahun ini juga RAND Corporation memulai riset terhadap ide ini (jaringan komputer terdistribusi), yang ditujukan untuk tujuan militer.
Awal 1960-an
Teori mengenai packet-switching dapat diimplementasikan dalam dunia nyata.
Pertengahan 1960-an
ARPA mengembangkan ARPANET untuk mempromosikan "Cooperative Networking of Time-sharing Computers", dengan hanya empat buah host komputer yang dapat dihubungkan hingga tahun 1969, yakni Stanford Research Institute, University of California, Los Angeles, University of California, Santa Barbara, dan University of Utah.
Istilah "Hypertext" dikeluarkan oleh Ted Nelson.
Jaringan Tymnet dibuat.
Anggota jaringan ARPANET bertambah menjadi 23 buah node komputer, yang terdiri atas komputer-komputer untuk riset milik pemerintah Amerika Serikat dan universitas.
Sebuah kelompok kerja yang disebut dengan International Network Working Group (INWG) dibuat untuk meningkatkan teknologi jaringan komputer dan juga membuat standar-standar untuk jaringan komputer, termasuk di antaranya adalah Internet. Pembicara pertama dari organisasi ini adalah Vint Cerf, yang kemudian disebut sebagai "Bapak Internet"
Beberapa layanan basis data komersial seperti Dialog, SDC Orbit, Lexis, The New York Times DataBank, dan lainnya, mendaftarkan dirinya ke ARPANET melalui jaringan dial-up.
ARPANET ke luar Amerika Serikat: pada tahun ini, anggota ARPANET bertambah lagi dengan masuknya beberapa universitas di luar Amerika Serikat yakni University College of London dari Inggris dan Royal Radar Establishment di Norwegia.
Vint Cerf dan Bob Kahn mempublikasikan spesifikasi detail protokol Transmission Control Protocol (TCP) dalam artikel "A Protocol for Packet Network Interconnection".
Bolt, Beranet & Newman (BBN), pontraktor untuk ARPANET, membuka sebuah versi komersial dari ARPANET yang mereka sebut sebagai Telenet, yang merupakan layanan paket data publik pertama.
Sudah ada 111 buah komputer yang telah terhubung ke ARPANET.
Protokol TCP dipecah menjadi dua bagian, yakni Transmission Control Protocol dan Internet Protocol (TCP/IP).
Grup diskusi Usenet pertama dibuat oleh Tom Truscott, Jim Ellis dan Steve Bellovin, alumni dari Duke University dan University of North Carolina Amerika Serikat. Setelah itu, penggunaan Usenet pun meningkat secara drastis.
Pada tahun ini pula,
emoticon diusulkan oleh Kevin McKenzie.
Awal 1980-an
Komputer pribadi (PC) mewabah, dan menjadi bagian dari banyak hidup manusia.
Tahun ini tercatat ARPANET telah memiliki anggota hingga 213 host yang terhubung.
Layanan
BITNET (Because It's Time Network) dimulai, dengan menyediakan layanan e-mail, mailing list, dan juga File Transfer Protocol (FTP).
CSNET (Computer Science Network) pun dibangun pada tahun ini oleh para ilmuwan dan pakar pada bidang ilmu komputer dari
Purdue University, University of Washington, RAND Corporation, dan BBN, dengan dukungan dari National Science Foundation (NSF). Jaringan ini menyediakan layanan e-mail dan beberapa layanan lainnya kepada para ilmuwan tersebut tanpa harus mengakses ARPANET.
1982
Istilah "Internet" pertama kali digunakan, dan TCP/IP diadopsi sebagai protokol universal untuk jaringan tersebut.
Name server mulai dikembangkan, sehingga mengizinkan para pengguna agar dapat terhubung kepada sebuah host tanpa harus mengetahui jalur pasti menuju host tersebut.
Tahun ini tercatat ada lebih dari 1000 buah host yang tergabung ke Internet.
1986
Diperkenalkan sistem nama domain, yang sekarang dikenal dengan DNS (Domain Name System) yang berfungsi untuk menyeragamkan sistem pemberian nama alamat di jaringan komputer.

Kejadian penting lainnya
Tahun 1971, Ray Tomlinson berhasil menyempurnakan program e-mail yang ia ciptakan setahun yang lalu untuk ARPANET. Program e-mail ini begitu mudah sehingga langsung menjadi populer. Pada tahun yang sama, ikon "@" juga diperkenalkan sebagai lambang penting yang menunjukkan “at” atau “pada”. Tahun 1973, jaringan komputer ARPANET mulai dikembangkan ke luar Amerika Serikat.

Komputer University College di London merupakan komputer pertama yang ada di luar Amerika yang menjadi anggota jaringan Arpanet. Pada tahun yang sama, dua orang ahli komputer yakni Vinton Cerf dan Bob Kahn mempresentasikan sebuah gagasan yang lebih besar, yang menjadi cikal bakal pemikiran internet. Ide ini dipresentasikan untuk pertama kalinya di Universitas Sussex.

Hari bersejarah berikutnya adalah tanggal 26 Maret 1976, ketika Ratu Inggris berhasil mengirimkan e-mail dari Royal Signals and Radar Establishment di Malvern. Setahun kemudian, sudah lebih dari 100 komputer yang bergabung di ARPANET membentuk sebuah jaringan atau network. Pada 1979, Tom Truscott, Jim Ellis dan Steve Bellovin, menciptakan newsgroups pertama yang diberi nama USENET. Tahun 1981 France Telecom menciptakan gebrakan dengan meluncurkan telpon televisi pertama, dimana orang bisa saling menelpon sambil berhubungan dengan video link.

Karena komputer yang membentuk jaringan semakin hari semakin banyak, maka dibutuhkan sebuah protokol resmi yang diakui oleh semua jaringan. Pada tahun 1982 dibentuk Transmission Control Protocol atau TCP dan Internet Protokol atau IP yang kita kenal semua. Sementara itu di Eropa muncul jaringan komputer tandingan yang dikenal dengan Eunet, yang menyediakan jasa jaringan komputer di negara-negara Belanda, Inggris, Denmark dan Swedia. Jaringan Eunet menyediakan jasa e-mail dan newsgroup USENET.

Untuk menyeragamkan alamat di jaringan komputer yang ada, maka pada tahun 1984 diperkenalkan sistem nama domain, yang kini kita kenal dengan DNS atau Domain Name System. Komputer yang tersambung dengan jaringan yang ada sudah melebihi 1000 komputer lebih. Pada 1987 jumlah komputer yang tersambung ke jaringan melonjak 10 kali lipat manjadi 10.000 lebih.
Tahun 1988, Jarko Oikarinen dari Finland menemukan dan sekaligus memperkenalkan IRC atau Internet Relay Chat. Setahun kemudian, jumlah komputer yang saling berhubungan kembali melonjak 10 kali lipat dalam setahun. Tak kurang dari 100.000 komputer kini membentuk sebuah jaringan. Tahun 1990 adalah tahun yang paling bersejarah, ketika Tim Berners Lee menemukan program editor dan browser yang bisa menjelajah antara satu komputer dengan komputer yang lainnya, yang membentuk jaringan itu. Program inilah yang disebut www, atau World Wide Web.


Tahun 1992, komputer yang saling tersambung membentuk jaringan sudah melampaui sejuta komputer, dan pada tahun yang sama muncul istilah surfing the internet. Tahun 1994, situs internet telah tumbuh menjadi 3000 alamat halaman, dan untuk pertama kalinya virtual-shopping atau e-retail muncul di internet. Dunia langsung berubah. Pada tahun yang sama Yahoo! didirikan, yang juga sekaligus kelahiran Netscape Navigator